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The experimental determination of the properties of the newly discovered boson at the Large
Hadron Collider is currently the most crucial task in high energy physics. We show how information
about the spin, parity, and, more generally, the tensor structure of the boson couplings can be
obtained by studying angular and mass distributions of events in which the resonance decays to
pairs of gauge bosons, ZZ,WW , and γγ. A complete Monte Carlo simulation of the process pp →

X → V V → 4f is performed and verified by comparing it to an analytic calculation of the decay
amplitudes X → V V → 4f . Our studies account for all spin correlations and include general
couplings of a spin J = 0, 1, 2 resonance to Standard Model particles. We also discuss how to use
angular and mass distributions of the resonance decay products for optimal background rejection.
It is shown that by the end of the 8 TeV run of the LHC, it might be possible to separate extreme
hypotheses of the spin and parity of the new boson with a confidence level of 99% or better for a
wide range of models. We briefly discuss the feasibility of testing scenarios where the resonances is
not a parity eigenstate.

PACS numbers: 12.60.-i, 13.88.+e, 14.80.Bn

I. INTRODUCTION

The discovery of the new boson [1, 2] at the LHC, which is further corroborated by the strong evidence from the
Tevatron [3], is the culmination of the hunt for the elusive Higgs boson. Three primary decay channels1 X → ZZ,
WW , and γγ were observed experimentally by the CMS and ATLAS collaborations. However, not much is currently
known about detailed properties of the new boson beyond its mass, mX ∼ 125 GeV, although some information
can be reasoned from data. We know that the width of the new particle is consistent with being smaller than the
experimental resolution of about a GeV. We also know that, as a consequence of the Landau-Yang theorem [4, 5],
the new boson cannot have spin one because it decays to two on-shell photons. Finally, we know that the relative
decay branching fractions and production cross-sections of the new particle are generally consistent with the Standard
Model (SM) Higgs boson hypothesis [6], although current accuracy of experimental measurements does not allow for
an unambiguous conclusion.
Since the new boson interacts with massive gauge bosons, we expect it to play some role in electroweak symmetry

breaking. However, this needs to be verified by direct measurements of its properties. In particular, it is important to
experimentally study the tensor structure of couplings of the new boson to SM fields and its SU(2)× U(1) quantum
numbers (if any), avoiding theoretical prejudice. For example, we may wonder if the relatively strong interaction of
the new particle with electroweak gauge bosons already observed implies that this new boson is not a pseudoscalar.
One may argue that this is the case because a pseudoscalar must interact with gauge bosons by means of higher-
dimensional operator whose significant contributions to X → V V would imply low scale physics beyond the SM which
should have already been observed experimentally. Since no beyond the SM physics has been observed at the LHC,
the scale of new physics cannot be low and it is tempting to conclude that the pseudoscalar nature of the new boson is
excluded2. While such arguments are appealing and may in fact be valid, it is important to test them experimentally,
especially when such tests are within reach. In fact, as we show in this paper, it is entirely possible to achieve that

1 Throughout this paper, we will use a uniform notation for both on-shell and off-shell massive gauge bosons.
2 Even stronger arguments about XV V coupling by means of higher-dimensional operators are possible if one assumes that X is a singlet
under electroweak SU(2)× U(1) [7].
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with data from the 8 TeV run of the LHC using di-boson final states. Hence, it is realistic to expect that a clear
profile of the new boson can be established by purely experimental means in a short period of time.
The determination of the quantum numbers of a Higgs-like particle was discussed in great detail in the literature,

see Refs. [8–24]. The strategy that we use in this paper is similar to what has already been discussed in Ref. [20].
In that reference we demonstrated that X decaying to two vector bosons provides an excellent channel to study the
tensor structure of its couplings and outlined the general way to do so. Since Ref. [20] was written before the new
particle was discovered, its mass and production rates were unknown. As a result, many examples studied in Ref. [20]
are, by now, of an academic interest. The discovery of the new boson allows us to extend the discussion presented in
Ref. [20] and arrive at realistic predictions about the prospects for measuring its spin and couplings at the LHC.
We extend the analysis reported in Ref. [20] in several important ways. First, since the mass of the new resonance

is mX ≃ 125 GeV, at least one of the bosons in the X → ZZ/WW decay is off-shell. Calculations reported in Ref. [20]
employed general structures of scattering amplitudes and general angular distributions but did not fully include the
off-shell kinematics of the vector bosons; we improve on this in the current paper. We also extend those earlier results
by including WW and γγ final states in the Monte Carlo simulation. As we stressed earlier [20], the optimal analysis
for the new boson discovery and its property measurements requires utilization of the full kinematic information about
the process. Analysis based on matrix elements or multivariate per-event likelihoods, such as MELA (Matrix Element
Likelihood Analysis), adopted by CMS [2, 25], allows for optimal background suppression. The same techniques also
guarantee the best performance when applied to measurements of the new boson’s properties.
In this paper, we consider the gluon fusion, gg, and quark-antiquark annihilation, qq̄, production mechanisms. The

primary production mode of the SM Higgs boson is expected to be gluon fusion. The inclusion of the qq̄ production
process completes all the possible initial state polarization scenarios for spin-one and spin-two resonance hypotheses
thus allowing for the most general treatment of kinematics, and inclusion of all relevant spin correlations. We also
note that weak Vector Boson Fusion (VBF) is expected to account for 7% to the SM Higgs boson production rate.
Since jet tagging identification would reduce the experimentally observable rate even further, the contribution from
the VBF topology is at the level of a few percent. As a result, we leave dedicated analysis of the VBF topology as
well as the analysis of other final states in the decay of the new boson to future work.
The paper is organized as follows. In Section II we review kinematics in resonance production and decay, expanding

on our earlier work in Ref. [20] and focusing on the case relevant to the observed boson mass mX < 2mZ(W ). In
Section III we discuss the Monte-Carlo event generator for simulating production and decay of a new boson with
different hypotheses for spin and tensor structure of interactions, expanding Ref. [20] to include new final states
covered in this paper. In Section IV we discuss the analysis methods. We summarize the results and conclude in
Section V. Detailed formulas for angular distributions and some numerical results are given in the Appendix.

II. KINEMATICS IN RESONANCE PRODUCTION AND DECAY

Before going into the discussion of how properties of the boson X can be studied, it is interesting to point out that
the determination of the spin-parity of a resonance through its decays to two gauge bosons, that subsequently decay
to four leptons, was first attempted more than a half-century ago, with the study of neutral pion decays π0 → γγ
and π0 → γ∗γ∗ → e+e−e+e−. Photon polarization in π0 → γγ can be used to determine π0 parity [5], but it is
more practical to use the orientation of the planes of the Dalitz pairs in the decay π0 → e+e−e+e− [26]. Further
developments of these techniques were discussed in Refs. [27, 28] and additional refinements were suggested in the
context of Higgs physics in Refs. [8–24] and in the context of B-physics in Refs. [29–32]. By analogy, the decay
X → ZZ → 4ℓ is an excellent channel to measure the spin, parity, and tensor structure of couplings of the new boson
since the full decay kinematics are experimentally accessible. In the channels X → WW → 2ℓ2ν and X → γγ less
kinematic information is available, but they can complement the measurements of the resonance properties. Other
final states of ZZ and WW could be considered, but they typically suffer from higher backgrounds.
We begin by discussing kinematics of the process. Consider a sequence of processes

gg/qq̄ → X(q) → V1(q1)V2(q2), V1 → f(q11)f̄(q12), V2 → f(q21)f̄(q22), (1)

that correspond to the production of a resonance X , followed by its decay to two vector bosons, followed by their
decays to four fermions. The four-momenta of all particles are shown in parentheses. Momentum conservation implies
qi = qi1 + qi2, q = q1 + q2. We denote the invariant mass of the i-th gauge-boson by m2

i = q2i and stress that it can
differ from its mass m2

V
. We assume that the particle X is produced on the mass shell, so that q2 = (q1 + q2)

2 = m2
X
.

In what follows, we will refer to the heavier (lighter) of the two gauge bosons as V1 (V2), m1 > m2.
As was already described in Ref. [20], three invariant masses mV1V2

, m1, and m2, and six angles fully characterize
the kinematics of the process in Eq. (1) in the rest frame of the resonance X . Five of these angles are illustrated in
Fig. 1, while the sixth angle defines the global rotation of an event in the plane transverse to the collision axis and,
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FIG. 1: Illustration of a X particle production and decay in pp collision gg or qq̄ → X → V1(q1)V2(q2), V1 → f(q11)f̄(q12),
V2 → f(q21)f̄(q22). The three-momenta of the fermions (f) and antifermions (f̄), q11, q12, q21, and q22, are shown in their
parent Vi rest-frames, and the three-momenta of the Vi bosons, qi, are shown in the X rest-frame. For sign convention of the
angles between planes see text.

for this reason, it is not shown. We define these angles explicitly through the momenta of the leptons that are directly
measurable experimentally.

• The angles θ∗ ∈ [0, π] and Φ∗ ∈ [−π, π] are defined through the unit vector of V1 direction, q̂1 =
(sin θ∗ cosΦ∗, sin θ∗ sinΦ∗, cos θ∗), in the rest frame of X . In this reference frame, the collision axis is aligned
with the z-axis, n̂z = (0, 0, 1), taken as the direction of a colliding quark or one of the colliding gluons. Note,
however, that the angle Φ∗ offset is arbitrary and it is not used in the final analysis. Also, when sequential decay
of the vector bosons is not available, which is the case for X → γγ, only the angle θ∗ is accessible experimentally.

• The angles Φ ∈ [−π, π] and Φ1 ∈ [−π, π] are the two azimuthal angles between the three planes constructed
from the X decay products and the two Vi-boson decay products in the X rest frame. The angle Ψ ∈ [−π, π] can
be used in place of Φ1, it is defined as Ψ = Φ1 + Φ/2 and can be interpreted as the angle between the parton-
scattering plane and the average between the two decay planes shown in Fig. 1. These angles are explicitly
defined as

Φ =
q1 · (n̂1 × n̂2)

|q1 · (n̂1 × n̂2)|
× cos−1 (−n̂1 · n̂2) ,

Φ1 =
q1 · (n̂1 × n̂sc)

|q1 · (n̂1 × n̂sc)|
× cos−1 (n̂1 · n̂sc) , (2)

where the normal vectors to the three planes are defined as

n̂1 =
q11 × q12

|q11 × q12|
, n̂2 =

q21 × q22

|q21 × q22|
, and n̂sc =

n̂z × q1

|n̂z × q1|
. (3)

In the above equations, qi1(2) is the three-momentum of a fermion (antifermion) in the decay of the Vi, and
q1 = q11 + q12 is the V1 three-momentum, where all three-momenta are defined in the X rest frame.

• Finally, the angles θ1 and θ2 ∈ [0, π] are defined as

θ1 = cos−1

(

− q2 · q11

|q2||q11|

)

, θ2 = cos−1

(

− q1 · q21

|q1||q21|

)

, (4)

where all three-momenta are taken in the rest frame of Vi for the angle θi.
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The invariant masses of the two-fermion final states, the six angles defined above, and four-momentum of the initial
partonic state exhaust the twelve degrees of freedom available to the four particles in the final state3. The initial state
four-momentum defines the X invariant mass mV1V2

and the motion of the X system in the longitudinal (rapidity
Y ) and transverse (pT ) directions. Both Y and pT distributions depend on the production mechanism and therefore
could help to further differentiate production models either for signal or background. However, these observables
have little discrimination power between different signal hypotheses once production and decay channels are fixed
and they introduce additional systematic uncertainties due to QCD effects. It is important to point out that the
transverse momentum of the X particle introduces smearing in the determination of the production angles θ∗ and
Ψ. The Collins-Soper frame [33] is designed to minimize the impact of the X transverse momentum on the angular
measurements. However, the effect is expected to be small compared to statistical uncertainties for the luminosity
expected in the 8 TeV run of the LHC and, for this reason, we do not study it in this paper.
The full differential mass and angular distribution can be expressed using Eq. (A1), where we can factorize the

phase-space and propagator terms

dΓJ(m1,m2, cos θ
∗,Ψ, cos θ1, cos θ2,Φ)

dm1dm2d cos θ∗dΨd cos θ1d cos θ2dΦ
∝ dΓJ(m1,m2, cos θ

∗,Ψ, cos θ1, cos θ2,Φ)

d cos θ∗dΨd cos θ1d cos θ2dΦ
× P (m1,m2), (5)

which are defined in Ref. [13] as

P (m1,m2) =
[

1− (m1 +m2)
2

m2
X

]
1
2 ×

[

1− (m1 −m2)
2

m2
X

]
1
2 × m3

1

(m2
1 −m2

V
)2 +m2

V
Γ2

V

× m3
2

(m2
2 −m2

V
)2 +m2

V
Γ2

V

. (6)

After integration over the five angles, the differential mass distribution takes the form

dΓJ

dm1dm2
∝

∑

α,β=−,0,+

|Aαβ(m1,m2)|2 × P (m1,m2). (7)

Below we discuss how to calculate Aαβ(m1,m2) for each spin and coupling hypothesis after a brief comment on
the notation that we use throughout the paper. The polarization vectors of spin-one bosons are denoted by ǫi; we
assume them to be transverse, qiǫi = 0. Fermion wave functions are conventional Dirac spinors. The spin-two X wave
function is given by a symmetric traceless tensor tµν , transverse to its momentum tµνq

ν = 0; its explicit form can be

found in Ref. [20]. We will often use the notation f (i),µν = ǫµi q
ν
i − ǫνi q

µ
i to denote the field strength tensor of a gauge

boson with momentum qi and polarization vector ǫi. Assuming that momenta of the two bosons, V1,2, are along the
z-axis q1,2 = (E1,2, 0, 0,±|q|), the polarization vectors read

eµ1,2(0) =
1

m1,2
(±|q|, 0, 0, E1,2) , eµ1 (±) = eµ2 (∓) =

1√
2
(0,∓1,−i, 0). (8)

The conjugate field strength tensor is defined as f̃
(i)
µν = 1/2 ǫµναβf

(i),αβ = ǫµναβǫ
α
i q

β
i . We use q̃ = q1 − q2 to denote

difference of momenta of the two gauge bosons.

A. Spin zero

Suppose that the new boson is a spin-zero particle. The general scattering amplitude that describes the interaction
of this boson with gauge bosons reads

A(X → V1V2) =
1

v

(

g(0)
1

m2
V
ǫ∗1ǫ

∗

2 + g(0)
2

f∗(1)
µν f∗(2),µν + g(0)

3
f∗(1),µνf∗(2)

µα

q2νq
α
1

Λ2
+ g(0)

4
f∗(1)
µν f̃∗(2),µν

)

, (9)

where Λ denotes the scale where new physics could appear. We insert an explicit factor m2
V
in the amplitude to allow

for a smooth massless limit consistent with generic requirements of gauge invariance which is relevant in case V = γ
or g.
It is instructive to discuss the connection between the amplitude in Eq. (9) and the concept of the effective La-

grangian which is often used to discuss properties of the new boson. While the two approaches are related, the

3 Throughout the paper, we take fermions in the final state to be massless.
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amplitude A(X → V1V2) provides a more general description of the properties of the new boson than any effective

Lagrangian because the couplings g
(0)
i are momentum-dependent form-factors that, for example, can have both real

and imaginary parts. We do not expect this issue to be important for the new boson with a mass of 125 GeV,
discovered at the LHC, but it may be essential for heavier resonances that may be discovered later, so we prefer to
stick to this description. On the other hand, it is also true that effective Lagrangians lead to streamlined prediction
for scattering amplitudes, since they provide an opportunity to order contributions of operators of different mass
dimensions by their relevance, thereby reducing the number of terms that contribute to scattering amplitudes. Of
course, given the scattering amplitude and assuming that form-factors are momentum-independent constants, the
corresponding Lagrangian can always be constructed. For example, in case of Eq. (9), the following correspondence
is valid

g
(0)
1 m2

V

v
ǫ∗1ǫ

∗

2 ⇔ L ∼ g(0)
1

XZµZ
µ,

g
(0)
2

v
f∗(1)
µν f∗(2),µν ⇔ L ∼ g

(0)
2

v
XZµνZ

µν ,

g(0)
3

f∗(1),µνf∗(2)
µα

qνq
α

Λ2
⇔ L ∼ g(0)

3
ZµνZµα [∂ν∂αX ] , g(0)

4
f∗(1)
µν f̃∗(2),µν ⇔ L ∼ g(0)

4
XZµνZ̃µν , (10)

where v is the vacuum expectation value of the X field. Therefore, terms with g
(0)
1 in A(X → V1V2) are associated

with dimension-three operators in the Lagrangian, terms with g
(0)
2 and g

(0)
4 with dimension-five, and terms with g

(0)
3

with dimension seven. As mentioned above, power-counting arguments suggest that lower-dimensional operators give
larger contributions to the amplitude.
We can re-write Eq. (9) as

A(X → V1V2) = v−1ǫ∗µ1 ǫ∗ν2

(

a1gµνm
2
X
+ a2 qµqν + a3ǫµναβ q

α
1 q

β
2

)

. (11)

The coefficients a1,2,3 are related to g
(0)
1,2,3,4 by

a1 = g(0)
1

m2
V

m2
X

+
s

m2
X

(

2g(0)
2

+ g(0)
3

s

Λ2

)

, a2 = −
(

2g(0)
2

+ g(0)
3

s

Λ2

)

, a3 = −2g(0)
4

, (12)

where s is defined as

s = q1q2 =
m2

X
−m2

1 −m2
2

2
. (13)

For a spin-zero resonance with couplings shown in Eq. (11), the three contributing helicity amplitudes are

A00 = −m2
X

v

(

a1
√
1 + x+ a2

m1m2

m2
X

x

)

,

A++ =
m2

X

v

(

a1+ia3
m1m2

m2
X

√
x

)

,

A−− =
m2

X

v

(

a1−ia3
m1m2

m2
X

√
x

)

, (14)

where x is defined as

x =

(

m2
X
−m2

1 −m2
2

2m1m2

)2

− 1. (15)

For a SM Higgs boson decaying to two massive vector bosons, ZZ or WW , the values of the couplings are g
(0)
1 = 1,

and g
(0)
2 = g

(0)
3 = g

(0)
4 = 0. A small value of g

(0)
2 ∼ O(αEW) ∼ 10−2 is generated in the SM by electroweak radiative

corrections. The CP -violating constant g
(0)
4 is tiny in the SM since it appears only at the three-loop level. For the SM

Higgs boson decays γγ, Zγ, or gg, only loop-induced couplings are possible so that g
(0)
2 6= 0 while the other couplings

are zero. However, allowing for beyond the SM scenarios, values of the g
(0)
i need to be determined experimentally.

For example, for a pseudoscalar Higgs boson one would expect g
(0)
4 6= 0 while the other g

(0)
i = 0. It is also interesting

to consider the model g
(0)
2 6= 0 as an alternative to the SM scalar hypothesis, or a mixture of any of the above

contributions.
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B. Spin one

For a spin-one resonance the amplitude depends on two independent terms

A(X → V1V2) = b1 [(ǫ
∗

1q)(ǫ
∗

2ǫX) + (ǫ∗2q)(ǫ
∗

1ǫX)] + b2ǫαµνβǫ
α
X
ǫ∗,µ1 ǫ∗,ν2 q̃β , (16)

where ǫX is the polarization vector of particle X . The decay into two massless identical vector bosons is not allowed.
The helicity amplitudes in the spin-one case corresponding to Eq. (16) are the following

A00 = b1
(m2

1 −m2
2)

mX

√
x ,

A++ = i b2
(m2

1 −m2
2)

mX

,

A−− = −i b2
(m2

1 −m2
2)

mX

,

A+0 = b1m1

√
x+ i b2

m2

m2
X

[

1

2

(

m2
X
−m2

1 +m2
2

)

(

m2
1

m2
2

− 1

)

+ 2m2
1x

]

,

A0+ = −b1m2

√
x− i b2

m1

m2
X

[

1

2

(

m2
X
+m2

1 −m2
2

)

(

m2
2

m2
1

− 1

)

+ 2m2
2x

]

,

A−0 = b1m1

√
x− i b2

m2

m2
X

[

1

2

(

m2
X
−m2

1 +m2
2

)

(

m2
1

m2
2

− 1

)

+ 2m2
1x

]

,

A0− = −b1m2

√
x+ i b2

m1

m2
X

[

1

2

(

m2
X
+m2

1 −m2
2

)

(

m2
2

m2
1

− 1

)

+ 2m2
2x

]

. (17)

The model b1 = g
(1)
1 6= 0 corresponds to a vector particle and b2 = g

(1)
2 6= 0 to pseudovector particle, assuming

parity-conserving interactions. Even though the spin-one hypothesis is rejected by the observation of X → γγ decay,
it is still interesting to consider the spin-one models in the decay to massive vector bosons. Indeed, there could be
two nearby resonances at 125 GeV, one decaying to massive gauge bosons and the other to γγ, and there have been
models suggested [34] which predict the presence of two resonances.

C. Spin two

For a decay of a spin-two resonance to two vector bosons, including ZZ, WW , and γγ, the scattering amplitude
has the following general form

A(X → V1V2) = Λ−1

[

2g(2)
1

tµνf
∗(1)µαf∗(2)να + 2g(2)

2
tµν

qαqβ
Λ2

f∗(1)µαf∗(2)νβ + g(2)
3

q̃β q̃α

Λ2
tβν

(

f∗(1)µνf∗(2)
µα + f∗(2)µνf∗(1)

µα

)

+g(2)
4

q̃ν q̃µ

Λ2
tµνf

∗(1)αβf
∗(2)
αβ +m2

V

(

2g(2)
5

tµνǫ
∗µ
1 ǫ∗ν2 + 2g(2)

6

q̃µqα
Λ2

tµν (ǫ
∗ν
1 ǫ∗α2 − ǫ∗α1 ǫ∗ν2 ) + g(2)

7

q̃µq̃ν

Λ2
tµνǫ

∗

1ǫ
∗

2

)

+g(2)
8

q̃µq̃ν
Λ2

tµνf
∗(1)αβ f̃

∗(2)
αβ +m2

V

(

g(2)
9

tµαq̃
α

Λ2
ǫµνρσǫ

∗ν
1 ǫ∗ρ2 qσ +

g
(2)
10 tµαq̃

α

Λ4
ǫµνρσq

ρq̃σ (ǫ∗ν1 (qǫ∗2) + ǫ∗ν2 (qǫ∗1))

)]

, (18)

where tµν is the X wave function given by a symmetric traceless tensor [20]. This amplitude can be re-written as

A(X → V1V2) = Λ−1e∗µ1 e∗ν2

[

c1 (q1q2)tµν + c2 gµνtαβ q̃
αq̃β + c3

q2µq1ν
m2

X

tαβ q̃
αq̃β + 2c41 q1νq

α
2 tµα + 2c42 q2µq

α
1 tνα

+c5tαβ
q̃αq̃β

m2
X

ǫµνρσq
ρ
1q

σ
2 + c6t

αβ q̃βǫµναρq
ρ +

c7t
αβ q̃β
m2

X

(ǫαµρσq
ρq̃σqν + ǫανρσq

ρq̃σqµ)

]

. (19)

In case of massless bosons, like γγ or gg, the terms with mV in Eq. (18) vanish. The coefficients c1−7 can be expressed

through g
(2)
1,..,10

c1 = 2g(2)
1

+ 2g(2)
2

s

Λ2

(

1 +
m2

1

s

)(

1 +
m2

2

s

)

+ 2g(2)
5

m2
V

s
,
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c2 = −g
(2)
1

2
+ g(2)

3

s

Λ2

(

1− m2
1 +m2

2

2s

)

+ 2g(2)
4

s

Λ2
+ g(2)

7

m2
V

Λ2
,

c3 = −
(

g
(2)
2

2
+ g(2)

3
+ 2g(2)

4

)

m2
X

Λ2
,

c41 = −g(2)
1

− g(2)
2

s+m2
1
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We note that when constructing parametrizations of parity-odd amplitudes in Eq. (18), we should carefully exploit
Schouten identities to remove mutually-dependent Lorentz structures. Such dependences lead to an interesting result
– it turns out that a potentially contributing term tµνf

µ
α f̃

να vanishes for traceless symmetric tensors, tµν .4 This
cancellation implies that contributions due to tµαq̃αǫµνρσǫ

∗ν
1 ǫ∗ρ2 qσ and tµαǫ1,αǫµνρσ q̃

νǫ∗ρ2 qσ are related. Therefore, if
we do not assume that the amplitude depends on fµν only, we could have had two Lorentz structures contributing
to the amplitude. However, because the Schouten identity connects these structures, we choose to keep only one of
them in Eq. (18).
We are now in a position to write down the helicity amplitudes for the spin-two case, using the parametrization

shown in Eq. (19). For simplicity, we omit Λ in the following equations; the dependence on Λ can be restored on
dimensional grounds. The amplitudes read
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4 We are grateful to S. Palmer and M. Baumgart for useful discussions of this point.
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+
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)2
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The minimal coupling scenario corresponds to the case g
(2)
1 = g

(2)
5 6= 0. However, when higher-dimension operators

are considered, a broader range of options becomes available, analogous to g
(0)
2 and g

(0)
4 in the spin-zero case. This

variety of couplings corresponds to the complete set of vector boson V1 and V2 polarization states for the given m1 and

m2. Among non-minimal couplings, the g
(2)
4 term provides an interesting Lorentz structure with the field strength

tensors of the two gauge bosons appearing similarly to the g
(0)
2 term in the spin-zero case.

We note that, in principle, all couplings that we employ in the paper should be considered functions of kinematic

invariants, e.g. g
(J)
i (m2

X
, q21 , q

2
2). Since the generic functional form of these couplings is unknown, accounting for

dependences of g
(J)
i on q21,2 introduces additional complications that are beyond the scope of this paper. Instead,

we prefer to start the spin-parity determination program by treating couplings as constants to understand the “big
picture” from data. Once this is accomplished, many further refinements and, in particular, kinematic dependences
of the coupling constants, can be examined. We also note that we use the same parametrization for the amplitudes
that describe decays X → ZZ and X → W+W−. In principle, since W ’s are not identical particles, the number of
independent form factors required to describe the most general X → W+W− amplitude should be larger. We neglect
this effect for the reasons explained above. Similarly, we point out that for spin-one and spin-two particles, the most
general parametrization of the amplitude involves terms that depend on the difference of invariant masses of two vector
bosons so that such terms vanish on the mass shell due to Bose symmetry. We do not include such terms in the present
calculation and only employ those Lorentz structures in all amplitudes that have non-vanishing on-shell limit q21 =
q22 = m2

V
. While this approximation is not parametric, we believe that the current parametrization already provides

sufficient variety of Lorentz structures of couplings for hypothesis testing. More sophisticated parameterizations are
only warranted if credible evidence shows that non-minimal couplings that we already introduced are insufficient to
describe properties of the new particle.

III. MONTE CARLO SIMULATION

We have extended the simulation program [20, 35] to allow for various di-boson final states and to include the option
of resonances decaying to off-shell gauge bosons. This program simulates the production and decay to two vector
bosons of the spin-zero, spin-one, and spin-two resonances in hadron-hadron collisions, including all spin correlations.
The processes gg/qq̄ → X → ZZ and WW → 4f , as well as gg/qq̄ → X → γγ, are implemented. It includes the
general couplings of the X particle to gluons and quarks in production and to vector bosons in decay. The program
can be interfaced to parton shower simulation (e.g. PYTHIA [36]) as well as full detector simulation through the Les
Houches Event file format.
As we discussed in Sec. II, in principle there is a large number of coupling constants to be determined. To illustrate

the main idea of spin-parity determination, we pick several scenarios listed in Table I. Among them we include the SM
Higgs boson spin-zero hypothesis (0+m) and the graviton-like minimal coupling hypothesis for spin-two (2+m). Other,
more exotic, hypotheses are also considered. We note that for the spin-two scenarios, we assume that gluon fusion

TABLE I: List of scenarios chosen for the analysis of the production and decay of an exotic X particle with quantum numbers
JP . The subscripts m (minimal couplings) and h (couplings with higher-dimension operators) distinguish different scenarios,
as discussed in the last column. The spin-zero and spin-one X production parameters do not affect the angular and mass
distributions, and therefore are not specified.

scenario X production X → V V decay comments

0+m gg → X g
(0)
1 6= 0 in Eq. (9) SM Higgs boson scalar

0+h gg → X g
(0)
2 6= 0 in Eq. (9) scalar with higher-dimension operators

0− gg → X g
(0)
4 6= 0 in Eq. (9) pseudo-scalar

1+ qq̄ → X b2 6= 0 in Eq. (16) exotic pseudo-vector

1− qq̄ → X b1 6= 0 in Eq. (16) exotic vector

2+m g
(2)
1 6= 0 in Eq. (18) g

(2)
1 = g

(2)
5 6= 0 in Eq. (18) graviton-like tensor with minimal couplings

2+h g
(2)
4 6= 0 in Eq. (18) g

(2)
4 6= 0 in Eq. (18) tensor with higher-dimension operators

2−h g
(2)
8 6= 0 in Eq. (18) g

(2)
8 6= 0 in Eq. (18) “pseudo-tensor”
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FIG. 2: Distributions of some of the representative observables: m1 in the X → ZZ analysis (left), Φ in the X → WW
analysis (middle), and cos θ∗ in the X → γγ analysis. Four signal hypotheses are shown: SM Higgs boson (red circles), 0−

(magenta squares), 2+m (blue triangles), 2+h (green diamonds), as defined in Table I. Points show simulated events and lines show
projections of analytical distributions. Here and throughout the paper, where only shapes of the distributions are illustrated
and unless otherwise noted, units on the y axis are arbitrary.

dominates the production mechanism, which is the case for the minimal coupling Kaluza-Klein graviton (2+m) [17], and
this assumption may have an impact on the final results for the achievable significance of spin hypotheses separation.
On the other hand, for the spin-zero scenarios, the production mechanism does not affect the angular and mass
distributions. The chosen scenarios listed in Table I are similar to those considered in our earlier paper [20].
Distributions of some of the representative observables are shown in Fig. 2 for mX = 125 GeV. A complete set of

distributions in the ZZ and WW final states is shown in Appendix B in Figs. 11, 12, 13. Throughout the paper we
consider

√
s = 8 TeV proton-proton collisions and use the CTEQ6L1 parton distribution functions [37].

In the following we describe a simplified treatment of the detector effects which is not meant to reproduce exactly
any of the LHC experiments, but still allows us to reliably understand feasibility of spin-parity studies at the LHC.
We introduce smearing of the track momentum transverse to the collision axis, pT , and photon cluster energy.
However, the exact resolution parameterization is not crucial as long as the overall signal-to-background separation
is reproduced well. We mimic detector acceptance effects by cutting on geometric and kinematic parameters, such as
pT and pseudorapidity, η = − ln tan(θ/2). Both leptons and photons are required to be in the effective acceptance
range |η| < 2.5.
The main backgrounds in the X → ZZ, WW , and γγ analyses are the continuum di-boson production, includ-

ing Zγ∗ for ZZ [1, 2]. These are modeled with POWHEG [38] (ZZ) and MadGraph [39] (WW,γγ). Additional
contributions of backgrounds with fake vector boson reconstruction requires special treatment. However, their con-
tributions are smaller and observable distributions are similar to the V V background, so their contributions can be
effectively accounted for by rescaling the di-boson background rate to match total background rates observed by the
LHC experiments.

IV. ANALYSIS METHODS

In this Section, we illustrate the application of the matrix element analysis formalism to distinguishing different
spin-parity hypotheses for the observed boson near 125 GeV. We illustrate this with the seven scenarios defined in
Table I and comment on future direction of the measurements.
In Ref. [20] we pointed out that the ultimate goal of the analysis should be the experimental determination of all

helicity amplitudes that involve X and two gauge bosons. The techniques discussed here and in Ref. [20] are ideally
suited for such measurements since parameters in the angular and mass distributions become fit parameters in analysis
of data. However, such multi-parameter fits require large samples of the signal events which are not yet available.
Therefore, in our opinion, the first step in understanding the spin-parity of the resonance should be distinguishing
between different hypotheses. For such a goal, a simplified, but still optimal, analysis approach can be developed that
employs just two observables. A simple extension of this analysis, which naturally arises if we assume, for example,
that the observed resonance is a mixed spin-parity state, is to fit for ratios of couplings. Ultimately, this approach
will lead to a complete multi-dimensional fit of all coupling parameters using a complete set of kinematic observables.
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TABLE II: Expected separation significance (Gaussian σ) between the SM Higgs boson scenario (0+m) and various JP
x hypotheses

defined in Table I. Expectations are given for the scenario of a 5.0 σ signal-to-background separation observed in the search for
the SM Higgs boson in each channel, and therefore interpretation in terms of integrated luminosity and pp collision energy at
the LHC may differ significantly between the three channels X → ZZ, WW , and γγ.

scenario X → ZZ X → WW X → γγ

0+m vs background 5.0 5.0 5.0

0+m vs 0+h 1.7 1.1 0.0

0+m vs 0− 2.9 1.2 0.0

0+m vs 1+ 1.9 2.0 –

0+m vs 1− 2.6 3.2 –

0+m vs 2+m 1.5 2.8 2.4

0+m vs 2+h ∼5 1.1 3.1

0+m vs 2−h ∼5 2.5 3.1

Going back to the two-dimensional fit, we note that one of the two observables is related to the resonance mass as
it typically has the largest discriminating power against the background. This observable depends on the final state;
for example, it is the four-lepton invariant mass m4ℓ in the X → ZZ → 4ℓ analysis, the transverse mass mT [1, 2] in
the X → WW → 2ℓ2ν analysis, or the two-photon invariant mass mγγ in the X → γγ analysis.
The second observable combines other kinematic information that is available, and it is designed to distinguish

between different signal spin-parity hypotheses in the optimal way. In the X → ZZ → 4ℓ analysis we build the
kinematic discriminant, defined in the MELA approach adopted by the CMS experiment [2, 25], which combines the
five angular and two mass observables in the optimal way. In the X → WW → 2ℓ2ν analysis, the complete matrix
element information cannot be exploited because of the neutrinos in the final state. Therefore, we adopt a simplified
approach by picking one observable that is most sensitive to the spin-parity of X . We found this observable to be the
di-lepton invariant mass mℓℓ while the opening angle between the two leptons in the transverse plain provides less
sensitivity. Finally, in the X → γγ analysis, the only available observable is cos θ∗ since there is no further sequential
decay chain involved.
We note that it is not our goal in this paper to demonstrate how the analysis should be optimized for the signal-

background separation. Doing so requires simulation of detector performance and of all background processes [1, 2].
Instead, we assume an excess of signal events over background in each of the three channels, X → ZZ, WW , and γγ,
and calculate the achievable level of separation power between different signal spin-parity hypotheses. While precise
prediction of spin-parity separation significances also requires detailed simulation, as long as the phase-space of the
discriminating observables is well-modeled, such predictions are less sensitive to details of the analysis once a given
signal significance is observed.
We present results for the expected separation significance between the SM Higgs boson scenario (0+m) and various

JP and coupling hypotheses defined in Table I for a fixed hypothesis of a signal excess, which we take to be 5σ for
the SM Higgs-like resonance. The performance quoted in Table II follows from the studies presented in the following
subsections and can be interpreted in terms of integrated luminosity and pp collision energy at the LHC for each of the
three channels X → ZZ, WW , and γγ. We observe that a simple rule of scaling with luminosity L, significance ∼

√
L,

is a very good approximation in these studies as long as the uncertainties are dominated by statistical errors.
We use an extended maximum-likelihood fit [20] to extract simultaneously the signal and background yields. The

likelihood is defined as

Lk = exp (−nsig − nbkg)
∏

i

(

nsig × Pk
sig(xi; α; β) + nbkg × Pbkg(xi; β)

)

, (22)

where nsig is the number of signal events, nbkg is the number of background events and P(xi;α;β) is the probability
density function for background or signal for different spin hypotheses, k. Each event candidate, i, is characterized
by a set of two observables xi = (m,D). The signal coupling parameters are collectively denoted by α, and the
remaining parameters by β. The correlated (m,D) distribution is parameterized with a binned histogram (template)
using simulation. The likelihood Lk in Eq. (22) is evaluated independently for each spin hypothesis k. Two sets of
pseudo-experiments are generated, each with same average number of signal events of a particular type embedded
into the expected background.
Examples of distributions of −2 ln(L1/L2) are shown for a large number of generated experiments in Fig. 3, where

one of the signal types is chosen to be the SM Higgs boson. The probability for an alternative signal to produce a
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FIG. 3: Distributions of −2 ln(L1/L2) with the likelihood Lk evaluated for two models and shown for a large number of
generated experiments in the analysis of X → ZZ (left), WW (middle), and γγ (right). The models shown are the SM Higgs
boson 0+ (red solid points) and the pseudoscalar 0− for ZZ or the graviton-like 2+m for WW and γγ (blue open points). The
scenarios correspond to those shown in Table II.

value of −2 ln(L1/L2) below the median value for the SM Higgs boson hypothesis is taken as the one-sided Gaussian
probability and interpreted as the number of Gaussian standard deviations, S. The value of S corresponds to an
effective separation between the two distributions in the symmetric case, or equivalently to the expected separation
between the two hypotheses. However, a certain amount of asymmetry between the distributions is possible, as we note
in some cases below, and the expected significance of separating type 2 signal from type 1 may differ from separation
of type 1 from type 2. An approximate average of the two values could be obtained from the point beyond which the
right-side tail of the left histogram and the left-side tail of the right histogram have equal areas (corresponding to
S/2). We choose to quote the first of the three values as more relevant for separation of alternative hypotheses from
the SM Higgs boson. A similar technique can be employed for the significance calculation of the signal excess over
background. Below we discuss details of the analysis methods that are particular to each channel.

A. X → ZZ

In the X → ZZ → 4ℓ channel, the dominant background is the continuous production of Zγ∗/ZZ 5. The ZZ
production cross section is comparable to that of the SM Higgs boson in the four-lepton invariant mass window
comparable to detector resolution. Loose selection requirements are applied to simulated signal and qq̄ → ZZ
background events to model detector effects of CMS and ATLAS. For lepton track transverse momentum, we apply
Gaussian random smearing with an rms ∆pT = 0.014× pT (GeV) for 90% of the core of the distribution and a wider
smearing for the 10% tail. Leptons are required to have pseudo-rapidity in the range |η| < 2.4 and pT greater than
7 GeV. In addition, leptons with the highest and next-to-highest transverse momentum are required to also have
pT > 20 and 10 GeV, respectively. To reject the non-ZZ background, the invariant masses of the di-lepton pairs are
required to satisfy 50 < m1 < 120 GeV and 12 < m2 < 120 GeV, where m1 > m2. The overall ZZ rate is then
scaled to be consistent with the total background observed in LHC experiments, including Drell-Yan and top events
with jets faking leptons. We do not attempt to model this instrumental background shape and implicitly assume that
shapes are well-modeled by qq̄ → ZZ events. Only events with 110 < m4ℓ < 160 GeV are considered in the final
analysis. The number of signal events after all selections is 0.8 events/fb−1, while the number of background events
is 1.9 events/fb−1. Using only the m4ℓ shape of signal and background, we find an expected significance of 3.3σ with
10 fb−1 of data, comparable to that observed at the LHC6.
As was pointed out earlier in Ref. [20, 23], using full kinematic information in the X → ZZ channel improves

signal-to-background separation by about 20% compared to a one-dimensional analysis of the invariant mass m4ℓ.
This has been exploited by the CMS experiment in the discovery of the new boson [2]. One can perform either

5 We will collectively refer to these two processes as ZZ in what follows.
6 We disregard the difference between the 7 and 8 TeV collision energies of LHC for simplicity.
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a multidimensional fit or create a kinematic discriminant (MELA) [2, 25] which is constructed from the ratio of
probabilities for signal and background hypotheses

Dbkg =

[

1 +
Pbkg(m4ℓ;m1,m2,Ω)

Psig(m4ℓ;m1,m2,Ω)

]−1

. (23)

Here Psig and Pbkg are the probabilities, as a function of masses mi and angular observables Ω for a given value of
invariant mass m4ℓ, as defined in Eq. (5), for the SM Higgs boson signal and ZZ background, respectively. Although
analytic computation of the matrix element for continuum ZZ production [23] exists, it neglects the Zγ∗ process and
therefore it can not yet be applied to the region below m4ℓ ∼ 180 GeV. Instead, we use a large sample of POWHEG
simulated events to fill a multi-dimensional histogram (template), where the most important correlations between up
to three observables are taken into account.
The above approach to background rejection is illustrated in Fig. 4, where we plot m4ℓ and Dbkg, which are

mostly uncorrelated in the small m4ℓ region considered. As shown in Fig. 4, for a wide range of different signal
spin-parity hypotheses, the Dbkg distributions do not differ considerably. However, all signal distributions of Dbkg

differ considerably from background. We confirm that significance of the signal observation in the two-dimensional
analysis of (m4ℓ, Dbkg) increases by more than 20% compared to a one-dimensional analysis of the invariant mass
m4ℓ. To simplify the fitting model, in the rest of the paper we will not use the additional background suppression
power of the Dbkg observable but we note that the effective significance can be increased by either including Dbkg in
the multivariate fit, or, equivalently, using information contained in Dbkg in the fit.
Separation between different spin-parity scenarios of the observed resonance can also be obtained using kinematic
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(blue triangles), and 2+h (green diamonds). Not all signal hypotheses are shown on all plots. The mass range 120 < m4ℓ < 130
GeV is shown in the D distributions.
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FIG. 5: Template distributions of D0− vs m4ℓ in the X → ZZ analysis for the SM Higgs boson (left), pseudoscalar resonance
(middle), and non-resonant ZZ background (right).
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information. We can re-write Eq. (23) as

DJP
x
=

[

1 +
P2(m4ℓ;m1,m2,Ω)

P1(m4ℓ;m1,m2,Ω)

]−1

. (24)

where P1 and P2 are the probabilities as defined in Eq. (5), for two different hypotheses of spin-parity and tensor
structure of interactions of the signal resonance. Equation (24) is indeed the optimal way to combine all relevant
kinematic information into a single observable DJP

x
for separating the SM Higgs boson scenario from other JP

x

hypotheses without loss of information.
As an example, in the right plot of Fig. 4 we show a kinematic discriminant D0− optimized for separating 0+m and

0− signal hypotheses. D0− is calculated in Eq. (24) with P2 taken as the probability density for 0−. Since m4ℓ is still
the most powerful observable to discriminate any type of signal from the background, we perform a two-dimensional
fit of (m4ℓ, D0−). The probability densities for signal and background are parameterized as two-dimensional template
histograms using simulation, as shown in Fig. 5.
In the scenario described above, with an expected SM Higgs boson signal significance of 3.3σ with 10 fb−1 of data,

we estimate an average separation of 1.9σ between the 0+m and 0− signal hypotheses. Equivalently, assuming that the
integrated luminosity is high enough to ensure 5σ signal-to-background separation, the average expected separation
of 0+m and 0− is 2.9σ, see Fig. 3. This and other results for several other signal hypotheses are shown in Table II. We
find the 0+m and 0− separation results consistent with those predicted by CMS [40], taking into account the assumed
signal significance (expected vs observed).
The separation power depends on information contained in kinematic distributions; we show illustrative examples

in Figs. 2, 11, and 12. For example, separation of the SM Higgs boson hypothesis from 0− is better than from 2+m
since a number of mass and angular distributions are more distinct. Also, we note that both 2+h and 2−h are even more
different from 0+m than any other hypothesis considered. One of the kinematic distributions that shows important
differences between the SM Higgs boson and the pseudoscalar, as well as between the SM Higgs boson and 2+h or 2−h ,
is the low-mass tail of m1 distribution, see the left plot in Fig. 2. As shown in Ref. [40], there is a rather large fraction
of the X → ZZ events in CMS with both Z’s off-shell. If this feature persists in data, it may reveal contributions of
more exotic couplings shown in Eqs. (9) and (18). We note that a particular feature which may enhance the m1 tail
considerably, as shown for the 2+h hypothesis in Fig. 2, is the presence of a large power of the parameter x in Eq. (21).

In turn, the appearance of this parameter is related to the terms c2 and c3 in A00 which are sensitive to g
(2)
4 coupling.

We comment about an interesting feature in Table II. On general grounds one can expect that significance of
hypotheses separation between two types of signal to be smaller than the observation significance of the signal.
However, in a situation when the kinematic discriminant itself provides substantial background rejection power,
significance of the observation of the alternative signal may become higher than that for the SM Higgs-like resonance.
This phenomenon occurs in the study of 2+h and 2−h hypotheses, where the m1 mass distribution becomes a particularly
powerful discriminating observable. As a result, for the corresponding signal types, D2+

h

and D2−
h

may become even

stronger background rejection observables than m4ℓ. We do not see this in Fig. 4 because the SM Higgs boson
hypothesis is used for the computation of Dbkg, but an alternative signal hypothesis could have been considered as
well. The m1-distribution then also leads to a very strong signal hypothesis separation, approaching the values of 5 σ
for SM Higgs boson vs 2+h and 2−h in Table II.
We note that analysis of the spin-parity hypotheses should not be limited to just discrete hypothesis testing. In

Ref. [20] we showed how a continuous spectrum of parameters can be obtained from a multidimensional fit. As an
intermediate step, one could consider determination of the fraction of a certain component in a mixed state. For

the spin-zero particle, this can be modeled by non-vanishing g
(0)
1 and g

(0)
4 couplings in Eq. (9). We note that, in

this scenario, there is an interference term in the amplitude which is correctly described by our simulation. Results
presented in Table II can be used to illustrate the typical precision on the fraction by dividing the full range between
the two extreme hypotheses by the number of standard deviations between them. For example, this implies that by
the end of the 8 TeV run, the LHC experiments may be able to constrain an approximately 50% admixture of the
CP -violating amplitude at 95% confidence level.

B. X → WW

Compared to the ZZ final state, the X → WW → 2ℓ2ν channel is expected to have a larger rate due to a larger
branching fraction of WW → 2ℓ2ν, provided that decay rates X → ZZ and X → WW are comparable. However the
analysis suffers from large backgrounds and the fact that neutrino momenta cannot be reconstructed. In place of the
four-lepton invariant mass, the transverse mass defined as mT = (2pℓℓT E

miss
T (1− cos∆φℓℓ−Emiss

T
))1/2, where ∆φℓℓ−Emiss

T

is the angle between the direction of the di-lepton pair and the missing energy Emiss
T vector in the transverse plane,
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FIG. 6: Distributions of mT (left), mℓℓ (middle), and ∆φℓℓ (right) in the X → WW analysis for the non-resonant WW
background (black solid circles), SM Higgs boson (red open circles), and a spin-two resonance in the 2+m model (blue triangles).
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FIG. 7: Template distribution of mℓℓ vs mT in the X → WW analysis for the SM Higgs boson (left), spin-two resonance
hypothesis 2+m (middle), and non-resonant WW background (right).

is exploited to disentangle signal from background [1, 2]. In our simplified study Emiss
T is calculated from the 2ν

momentum. The one-jet eµ and zero-jet same-flavor categories only contribute to the signal sensitivity at the 10%
level because of larger backgrounds from top-quark decays and Drell-Yan production, respectively [1, 2]. Therefore,
we only select events with different lepton flavors (eµ) and little jet activity to enhance signal-to-background ratio, so
all events with jets with transverse energy greater than 30 GeV are rejected. In this category, the main background
comes from the non-resonant WW production [1, 2]. To further reject the reducible backgrounds such as Drell-Yan
and W + jets/γ processes, we require pT > 20(10) GeV for the leading (sub-leading) lepton, pℓℓT > 30 GeV for the
di-lepton system, Emiss

T > 20 GeV, 60 < mT < 130 GeV, and 10 < mℓℓ < 90 GeV.
We estimate the expected number of signal and WW background events after this selection by extrapolating the

expected yields in the signal regions used in Ref. [2] to the signal region defined above using simulation. The estimated
number of SM Higgs boson events is 13 per fb−1. The number of non-resonant WW background events is estimated
to be 104 per fb−1. We also assume that continuum WW production gives two-thirds of the total background
and that kinematic distributions of the non-WW backgrounds are the same as the ones of the WW background.
We cross-check this estimation using the signal region used in Ref. [1] and find consistent results. To extract the
expected significance for separating different signal hypotheses S, we construct a two-dimensional template based on
two observables (m,D) = (mT ,mℓℓ); this is illustrated in Figs. 6 and 7. We have also considered other observables,
such as the azimuthal angle ∆φℓℓ between the two leptons and found smaller separation compared to the case when
mℓℓ is used. On the other hand, since there is large correlation between ∆φℓℓ and mℓℓ, using three observables in the
fit is not expected to increase the significance of the separation much.
Using this simplified background model, we estimate the expected significance for distinguishing the SM Higgs

boson hypothesis from the background with 10 fb−1 using either the single observable mℓℓ or the two observables mT



15

and mℓℓ. The former approach gives 2.6σ separation from the background, similar to results of the LHC [1, 2], while
the latter gives 3.5σ which is an improvement of 35%. We follow the procedure outlined for the X → ZZ analysis
above and present the results in Fig. 3 and Table II. We find good separation between the SM Higgs boson and the 2+m
hypotheses in particular, where this channel may have an advantage over the X → ZZ channel. The reason for better
performance of the WW channel for 2+m separation is the larger value of parameter Af defined in the Appendix A,
which enters the angular distributions in Eq. (A1). As a consequence, there are larger azimuthal angular variations
which are illustrated in Figs. 2, 12, and 13.

C. X → γγ

In the inclusive X → γγ decay analysis, all information about the couplings is contained in the cos θ∗ distribution.
The distribution is flat for a spin-zero resonance, while for a spin-two it is a normalized second degree polynomial in
cos2 θ∗ which requires two independent parameters. Non-zero values of either parameter would be an unambiguous
sign of a spin-two (or in principle higher spin) resonance. However, relating these coefficients to general couplings will
have many ambiguities which are not generally present in the ZZ and WW channels. Indeed, the spin-two X → γγ
angular distribution reads
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FIG. 8: Distributions of mγγ (left) and cos θ∗ (right) in the X → γγ analysis for the non-resonant γγ background (black
solid circles), SM Higgs boson (red open circles), the spin-two resonance in the 2+m model (blue triangles) and 2+h or 2−h models
(green diamonds). The mass range 120 < mγγ < 130 GeV is shown in the cos θ∗ plot for background.
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FIG. 9: Template distributions of cos θ∗ vs mγγ in the X → γγ analysis for the background (left), SM Higgs boson (middle),
and spin-two resonance hypothesis 2+m (right).
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16 dΓ(XJ=2 → γγ)

5 Γd cos θ∗
= (2 − 2fz1 + fz2)− 6(2− 4fz1 − fz2) cos

2 θ∗ + 3(6− 10fz1 − 5fz2) cos
4 θ∗

+f+−

{

(2 + 2fz1 − 7fz2) + 6(2− 6fz1 + fz2) cos
2 θ∗ − 5(6− 10fz1 − 5fz2) cos

4 θ∗
}

∝ 1 +A× cos2 θ∗ +B × cos4 θ∗ , (25)

where f++, f−−, and f−+ = f+− are fractions of transverse amplitudes in the decay, and fz1 and fz2 are polarization
fractions in production, see Appendix A of Ref. [20] for more details. The special case of the minimal coupling
in both production and decay corresponds to fz1 + fz2 = 1 and f+− = f−+ = 1/2. In this case, one obtains
(1 + 6 cos2 θ∗ + cos4 θ∗) for the gg production mechanism with fz2 = 1 and (1 − cos4 θ∗) for the qq̄ production
mechanism with fz1 = 1. The ideal distributions in Eq. (25) are shown together with generated events in Fig. 2.
These distributions are identical for the 2+h and 2−h hypotheses.
For illustration purposes, we proceed with the discussion of a simplified analysis. The acceptance thresholds, chosen

to be similar to those used in LHC analyses, are E1
T > mγγ/3 and E2

T > mγγ/4 for the first and second photons,
respectively. We apply η-dependent Gaussian random smearing to photon cluster energy which varies between between
1% in the central pseudorapidity region and 6% in the forward region. Photons must be inside the calorimeter
acceptance |η| < 2.5 and outside the crack region 1.44 < |η| < 1.57, similarly to the CMS experiment. Considering
the mass window 110 < mγγ < 140 GeV, we estimate the expected number of signal and background events based on
Refs. [1, 2] to be 22 and 3515 per fb−1, respectively. To extract the expected separation significance between different
signal spin-parity hypotheses S, we construct a two-dimensional template based on (m,D) = (mγγ , cos θ

∗) shown in
Figs. 8 and 9. The loss of events at large values of | cos θ∗| limits the precision of polarization measurements and is
due to pT and η selection requirements. Similar effects appear in the analysis of the Drell-Yan process, as discussed
for example in Ref. [41]. We rely on the shapes of the distributions after the above kinematic selection, and the
normalization is taken from data. Using two-dimensional (mγγ , cos θ

∗) templates, we obtain 2.7σ significance with
10 fb−1, which is similar to the LHC results expected for the SM Higgs boson [1, 2].
We find good separation between the SM Higgs boson hypothesis and the spin-two models considered, as can be

seen in Fig. 3 and in Table II. However, since just one angle is available in the analysis, the separation power may be
weak or absent for other models where the cos θ∗ distribution is close to flat.

V. SUMMARY AND CONCLUSION

We have described a framework to determine the spin, parity, and general tensor structure of interactions of the
new boson observed at the LHC. We consider a variety of Lorentz structures for spin-parity hypothesis testing that go
beyond the minimal couplings expected for the SM Higgs boson or the graviton-like interactions of a spin-two boson.
The full analytical calculation of angular and mass dependence of the decay amplitude X → V ∗V ∗ allows the most
general analysis of a resonance with any integer spin J . A Monte Carlo simulation of the process pp → X → V ∗V ∗,
with V = Z, W , and γ, with off-shell electroweak gauge bosons, all spin correlations, and general couplings enables
experimental investigation of the properties of the new resonance. Both the analytic formulas and the event generator
are publicly available, see Ref. [35].
We have illustrated how the spin and parity of the new boson can be tested in the processes pp → X → ZZ,

WW , and γγ, using simplified simulation of the background and of the detector effects at the LHC experiments. We
have presented the expected significance of spin-parity hypothesis separation for several scenarios in Table II, where
it is assumed that the 5σ signal-to-background separation is achieved in each channel. The linearity of the relation
between the signal-to-background significance and the spin-parity signal hypothesis separation significance allows us
to extrapolate expectations to different luminosity scenarios, as shown in Fig. 10 for 0− and 2+m models. We rely
on the expected signal-to-background significances reported by the LHC experiments for the integrated luminosity
of about 10 fb−1, which we take as 3.8, 2.4, and 2.8σ in the X → ZZ, WW , and γγ channels, respectively [2]. In
Table III we show examples of hypothesis separation expectations, per each LHC experiment, by the end of the 8 TeV
LHC run, assuming 35 fb−1 of integrated luminosity.
We would also like to comment on some other potential final states in the decay of the new boson, such as Zγ and

fermion-antifermion final states. Since no significant excess of events in these final states has been observed, we leave
detailed discussion of these final states to later work. However, the techniques discussed in this paper are applicable
to them as well. For example, analysis of associated production qq̄ → Z∗ → ZX → (ℓ−ℓ+)(bb̄) or (ℓ−ℓ+)(τ−τ+),
and similarly qq̄′ → W ∗ → WX , would follow the same formalism as discussed above. In the above processes, the
angular distributions of decay products should allow discrimination between the spin and coupling hypotheses for
both XV V and Xff̄ . For a spin-zero X decay, the fermion angular distributions are flat; for a spin-one X , the
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TABLE III: Expected separation significance S (Gaussian σ) between the SM Higgs boson scenario (0+m) and 0− or 2+m
hypotheses in the analyzed channels and combined, for the scenario corresponding approximately to 35 fb−1 of integrated
luminosity at one LHC experiment.

scenario X → ZZ X → WW X → γγ combined

0+m vs background 7.1 4.5 5.2 9.9

0+m vs 0− 4.1 1.1 0.0 4.2

0+m vs 2+m 2.2 2.5 2.5 4.2
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FIG. 10: Expected hypotheses separation significance vs signal observation significance for the SM Higgs boson vs 0− (left)
and 2+m (right) hypotheses. Points show two luminosity scenarios tested with generated experiments and expectations are
extrapolated linearly to other significance scenarios. Dashed lines indicate what might be expected with 35 fb−1 of data at one
LHC experiment.

angular distributions are similar to those in Eq. (A1) with J = 1; and for a spin-two X , the angular distributions
can be obtained in a similar manner. The angular distributions for general couplings in the decay X → f f̄ can be
obtained from Ref. [20].
In view of the importance of the discovery of the new boson for particle physics, it is important to confront all

theoretical assumptions about its properties against experimental facts. The results presented in this paper point
towards a realistic possibility that by the end of the 8 TeV run of the LHC, extreme hypotheses about spin and
parity of the new boson can be experimentally excluded. However, it will be much harder to exclude contributions of
anomalous couplings of the Higgs bosons to gauge bosons if they are smaller than ten percent of the SM couplings.
For that, a significantly larger dataset will be required and multivariate fitting techniques [20] will help to achieve this
goal. Nonetheless, if the nature of the new boson discovered at the LHC is exotic, there is a good chance to determine
this already in the coming year.
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Appendix A: Analytical angular distributions

In this appendix we present the general angular distribution in the production and decay of a particle X , with any
integer spin J , in parton collisions ab → X → V1(q1)V2(q2), V1 → f(q11)f̄(q12), V2 → f(q21)f̄(q22), as derived in
Ref. [20] and generalized here to remove the constraint between the Aαβ and Aβα amplitudes. Helicity amplitudes
Aαβ depend on the vector boson resonance masses m1 and m2, as described in Eqs. (14), (17), and (21), and related
formulas incorporating the couplings. We work in the rest frame of the resonance X and all angles that we use below
are defined in Section II.
The amplitudes Aαβ are, in general, complex and the angular distribution is parameterized by the magnitude of

the amplitude |Aαβ | and the phase φαβ = arg(Aαβ/A00). The angular distribution is

NJ dΓJ (m1,m2, cos θ
∗,Ψ, cos θ1, cos θ2,Φ)

d cos θ∗dΨd cos θ1d cos θ2dΦ
=

F J
0,0(θ

∗)×
[

4 |A00|2 sin2 θ1 sin
2 θ2

+ |A++|2
(

1 + 2Af1 cos θ1 + cos2 θ1
) (

1 + 2Af2 cos θ2 + cos2 θ2
)

+ |A−−|2
(

1− 2Af1 cos θ1 + cos2 θ1
) (

1− 2Af2 cos θ2 + cos2 θ2
)

+ 4|A00||A++|(Af1 + cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(Φ + φ++)

+ 4|A00||A−−|(Af1 − cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(Φ− φ−−)

+ 2|A++||A−−| sin2 θ1 sin2 θ2 cos(2Φ− φ−− + φ++)
]

+F J
1,1(θ

∗)×
[

2|A+0|2(1 + 2Af1 cos θ1 + cos2 θ1) sin
2 θ2

+ 2|A0−|2 sin2 θ1(1− 2Af2 cos θ2 + cos2 θ2)

+ 2|A−0|2(1− 2Af1 cos θ1 + cos2 θ1) sin
2 θ2

+ 2|A0+|2 sin2 θ1(1 + 2Af2 cos θ2 + cos2 θ2)

+ 4|A+0||A0−|(Af1 + cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(Φ + φ+0 − φ0−)

+ 4|A0+||A−0|(Af1 − cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(Φ + φ0+ − φ−0)
]

+F J
1,−1(θ

∗)×
[

4|A+0||A0+|(Af1 + cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(2Ψ− φ+0 + φ0+)

+ 4|A+0||A−0| sin2 θ1 sin2 θ2 cos(2Ψ− Φ− φ+0 + φ−0)

+ 4|A0−||A0+| sin2 θ1 sin2 θ2 cos(2Ψ + Φ− φ0− + φ0+)

+ 4|A0−||A−0|(Af1 − cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(2Ψ− φ0− + φ−0)
]

+F J
2,2(θ

∗)×
[

|A+−|2(1 + 2Af1 cos θ1 + cos2 θ1)(1− 2Af2 cos θ2 + cos2 θ2)

+ |A−+|2(1− 2Af1 cos θ1 + cos2 θ1)(1 + 2Af2 cos θ2 + cos2 θ2)
]

+F J
2,−2(θ

∗)×
[

2|A+−||A−+| sin2 θ1 sin2 θ2 cos(4Ψ− φ+− + φ−+)
]

+F J
0,1(θ

∗)×
[

4
√
2|A00||A+0|(Af1 + cos θ1) sin θ1 sin

2 θ2 cos(Ψ− Φ/2− φ+0)

+ 4
√
2|A00||A0−| sin2 θ1(Af2 − cos θ2) sin θ2 cos(Ψ + Φ/2− φ0−)

+ 2
√
2|A−−||A+0| sin2 θ1(Af2 − cos θ2) sin θ2 cos(−Ψ+ 3Φ/2 + φ+0 − φ−−)

+ 2
√
2|A−−||A0−|(Af1 − cos θ1) sin θ1(1− 2Af2 cos θ2 + cos2 θ2) cos(−Ψ+Φ/2 + φ0− − φ−−)

+ 2
√
2|A++||A+0|(1 + 2Af1 cos θ1 + cos2 θ1)(Af2 + cos θ2) sin θ2 cos(Ψ + Φ/2− φ+0 + φ++)

+ 2
√
2|A++||A0−|(Af1 + cos θ1) sin θ1 sin

2 θ2 cos(Ψ + 3Φ/2− φ0− + φ++)
]

+F J
0,−1(θ

∗)×
[

4
√
2|A00||A0+| sin2 θ1(Af2 + cos θ2) sin θ2 cos(Ψ + Φ/2 + φ+0)

+ 4
√
2|A00||A−0|(Af1 − cos θ1) sin θ1 sin

2 θ2 cos(Ψ− Φ/2 + φ−0)

+ 2
√
2|A−−||A0+|(Af1 − cos θ1) sin θ1 sin

2 θ2 cos(Ψ + 3Φ/2 + φ0+ − φ−−)
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+ 2
√
2|A−−||A−0|(1− 2Af1 cos θ1 + cos2 θ1)(Af2 − cos θ2) sin θ2 cos(Ψ + Φ/2 + φ−0 − φ−−)

+ 2
√
2|A++||A0+|(Af1 + cos θ1) sin θ1(1 + 2Af2 cos θ2 + cos2 θ2) cos(Ψ− Φ/2 + φ0+ − φ++)

+ 2
√
2|A++||A−0| sin2 θ1(Af2 + cos θ2) sin θ2 cos(−Ψ+ 3Φ/2− φ−0 + φ++)

]

+F J
0,2(θ

∗)×
[

4|A00||A+−|(Af1 + cos θ1) sin θ1(Af2 − cos θ2) sin θ2 cos(2Ψ− φ+−)

+ 2|A−−||A+−| sin2 θ1(1− 2Af2 cos θ2 + cos2 θ2) cos(2Ψ− Φ+ φ−− − φ+−)

+ 2|A++||A+−|(1 + 2Af1 cos θ1 + cos2 θ1) sin
2 θ2 cos(2Ψ + Φ+ φ++ − φ+−)

]

+F J
0,−2(θ

∗)×
[

4|A00||A−+|(Af1 − cos θ1) sin θ1(Af2 + cos θ2) sin θ2 cos(2Ψ + φ−+)

+ 2|A−−||A−+|(1 − 2Af1 cos θ1 + cos2 θ1) sin
2 θ2 cos(2Ψ + Φ− φ−− + φ−+)

+ 2|A++||A−+| sin2 θ1(1 + 2Af2 cos θ2 + cos2 θ2) cos(2Ψ− Φ− φ++ + φ−+)
]

+F J
1,2(θ

∗)×
[

2
√
2|A+0||A+−|(1 + 2Af1 cos θ1 + cos2 θ1)(Af2 − cos θ2) sin θ2 cos(Ψ + Φ/2 + φ+0 − φ+−)

+ 2
√
2|A0−||A+−|(Af1 + cos θ1) sin θ1(1− 2Af2 cos θ2 + cos2 θ2) cos(Ψ− Φ/2 + φ0− − φ+−)

− 2
√
2|A0+||A−+|(Af1 − cos θ1) sin θ1(1 + 2Af2 cos θ2 + cos2 θ2) cos(−Ψ+Φ/2 + φ0+ − φ−+)

− 2
√
2|A−0||A−+|(1− 2Af1 cos θ1 + cos2 θ1)(Af2 + cos θ2) sin θ2 cos(Ψ + Φ/2 + φ−0 − φ−+)

]

+F J
1,−2(θ

∗)×
[

2
√
2|A+0||A−+| sin2 θ1(Af2 + cos θ2) sin θ2 cos(3Ψ− Φ/2− φ+0 + φ−+)

+ 2
√
2|A0−||A−+|(Af1 − cos θ1) sin θ1 sin

2 θ2 cos(3Ψ + Φ/2− φ0− + φ−+)

− 2
√
2|A0+||A+−|(Af1 + cos θ1) sin θ1 sin

2 θ2 cos(3Ψ + Φ/2 + φ0+ − φ+−)

− 2
√
2|A−0||A+−| sin2 θ1(Af2 − cos θ2) sin θ2 cos(3Ψ− Φ/2 + φ−0 − φ+−)

]

, (A1)

where NJ is the normalization constant which does not affect the angular and mass distributions. Because decays
of vector bosons Vi → fif̄i are involved, the angular distributions depend on the parameter Afi characterizing their

decay, defined as Af = 2ḡfV ḡ
f
A/(ḡ

f2
V + ḡf2A ) [31]. This parameter is 1 for W decays and approximately 0.15 for

Z → ℓ−ℓ+. Equation (A1) represents a more general version of Eq. (B1) from Ref. [20], where sign conventions are
different between the two equations. Conventions for Eq. (A1) are consistent with Eqs. (2)–(4). The functions F J

i,j(θ
∗)

are defined through the Wigner d-functions as7

F J
i,j(θ

∗) =
∑

m=0,±1,±2

fm dJim(θ∗)dJjm(θ∗) , (A2)

where fm are fractions of the X particle polarization as defined in Ref. [20]. In qq̄ annihilation the resonance X can
only be produced by m = ±1, whereas in gluon fusion m = ±2 or 0. The relative fractions of m = ±2 and 0 are
determined by amplitudes in Eq. (21) which simplify in the case of couplings to two massless gluons and depend on
production couplings in Eq. (18). The relative fraction of qq̄ → X production is denoted by fqq̄ and is determined by
the ratio of cross-sections, including effects of parton structure functions. This leads to

f+1 = f−1 =
fz1
2

=
fqq̄
2

,

f+2 = f−2 =
fz2
2

= (1 − fqq̄)
|Agg

+−|2
∑

α,β=±1 |A
gg
αβ |2

= (1− fqq̄)
|Agg

−+|2
∑

α,β=±1 |A
gg
αβ |2

,

f0 = fz0 = (1− fqq̄)
|Agg

++|2 + |Agg
−−|2

∑

α,β=±1 |A
gg
αβ |2

. (A3)

For a spin-zero resonance fqq̄ = 0 and f0 = 1. For a spin-one resonance fqq̄ = 1. For a spin-two resonance, generally

7 The convention presented here differs from that in Ref. [20]. All probability distributions are invariant under the simultaneous
transformations θ∗ → (π − θ∗) and Φ1 → (π +Φ1). The different convention is equivalent to either of these two transformations.
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all polarizations are possible. The minimal couplings of a spin-two resonance correspond to f0 = 0. Specific examples
of F J

i,j for J = 0, 1, 2 are given in Ref. [20].

Appendix B: Angular and mass distributions

We illustrate MC simulation and compare it to the derived analytical angular and mass distributions in Figs. 11
and 12 for the ZZ, and in Fig. 13 for the WW final states. The X → γγ distributions are shown in Fig. 2. We have
also validated that results presented in this paper using Eqs. (23) and (24) are nearly identical if in place of analytical
parameterization of the probabilities, P , we use matrix element calculations from the vector algebra employed in the
event generator. The two methods are conceptually independent but are mathematically equivalent, apart from the
normalization of the probabilities which is easier to calculate with the analytical parameterization. We provide the
necessary code for both methods in Ref. [35].
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FIG. 11: Distributions of the observables in the X → ZZ analysis, from left to right: spin-zero, spin-one, and spin-two signal,
and qq̄ → ZZ background. The signal hypotheses shown are J+

m (red circles), J+
h (green squares), J−

h (blue diamonds), as
defined in Table I. Background is shown with the requirements m2 > 10 GeV and 120 < m4ℓ < 130 GeV. The observables
shown from top to bottom: m1 and m2 (where m1 > m2). Points show simulated events and lines show projections of analytical
distributions.
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FIG. 12: Distributions of the observables in the X → ZZ analysis, from left to right: spin-zero, spin-one, and spin-two signal,
and qq̄ → ZZ background. The signal hypotheses shown are J+

m (red circles), J+
h (green squares), J−

h (blue diamonds), as
defined in Table I. Background is shown with the requirements m2 > 10 GeV and 110 < m4ℓ < 140 GeV. The observables shown
from top to bottom: cos θ∗, Φ1, cos θ1, cos θ2, and Φ. Points show simulated events and lines show projections of analytical
distributions.



22

 [GeV]νlm
0 20 40 60 80 100 120

 

0

5

10

15

20

25

30

35

 [GeV]νlm
0 20 40 60 80 100 120

 

0

5

10

15

20

25

30

35

 [GeV]νlm
0 20 40 60 80 100 120

 

0

5

10

15

20

25

30

35

*θcos
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 

0

1

2

3

4

5

6

*θcos
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 

0

1

2

3

4

5

6

7

8

*θcos
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 

0
2
4

6
8

10
12
14

16
18
20
22

1Φ
-3 -2 -1 0 1 2 3

 

0

1

2

3

4

5

6

1Φ
-3 -2 -1 0 1 2 3

 

0

1

2

3

4

5

6

7

1Φ
-3 -2 -1 0 1 2 3

 

0

1

2

3

4

5

6

7

2θ or cos1θcos
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 

0

1

2

3

4

5

6

7

8

9

2θ or cos1θcos
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 

0

1

2

3

4

5

6

7

2θ or cos1θcos
-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

 

0

1

2

3

4

5

6

7

8

9

Φ
-3 -2 -1 0 1 2 3

 

0

2

4

6

8

10

12

Φ
-3 -2 -1 0 1 2 3

 

0

1

2

3

4

5

6

7

8

Φ
-3 -2 -1 0 1 2 3

 

0

2

4

6

8

10

FIG. 13: Distributions of the observables in the X → WW analysis, from left to right: spin-zero, spin-one, and spin-two
signal. The signal hypotheses shown are J+

m (red circles), J+
h (green squares), J−

h (blue diamonds), as defined in Table I.
The observables shown from top to bottom: m1,2, cos θ

∗, Φ1, cos θ1,2, and Φ. Points show simulated events and lines show
projections of analytical distributions.
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